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A generalized Flory-Huggins theory is presented for use in fitting and predicting liquid-liquid phase 
diagrams of quasi-binary polymer solutions and blends, in which one component may be polydisperse. A 
temperature- and concentration-dependent Z parameter is employed. As has been demonstrated previously 
for simple binary systems, the form chosen for Z is sufficient to fit phase diagrams having upper and lower 
critical solution temperatures (UCST and LCST), combination of the two with the LCST lying above the 
UCST, closed loop and hour-glass shapes. In extending this work to quasi-binary systems, the phase 
diagrams obtained are compared with those for binary solutions and blends. It is illustrated how polymer 
solutions, in which the polymeric component has the same weight-average molecular weight and even the 
same polydispersity index, although having identical spinodals, may exhibit markedly different cloud-point 
curves. Comparison is also made with experimental data determined on a model quasi-binary system. Such 
comparisons may be used to extract the temperature and concentration dependence of X for the system. 

(Keywords: phase diagrams; quasi-binary solutions; quasi-binary blends; interaction parameter; Flory-Huggins theory; 
modelling) 

INTRODUCTION Here, the application of this modelling method to 
Phase diagrams are useful in understanding polymer quasi-binary polymer solutions and blends is described, 
solutions, and they are critical to the proper design of and the critical points, cloud-point curves and spinodal 
polymer blends. It is known both theoretically and curves are quantitatively investigated. 
experimentally that the average molecular weight and 
the molecular-weight distribution can have a significant THERMODYNAMIC QUANTITIES 
effect on the location and shape of phase diagrams L2. 
The effect of molecular-weight distribution on the form The Gibbs free-energy density of mixing of component 
of the phase diagrams of quasi-binary polymer solutions 1 with component 2 of a quasi-binary system (one 
has been studied previously in a quantitative manner 3 ' 4 .  polydisperse component) is given by: 
However, these investigations focused primarily on upper AG 1 q~2 
critical solution temperature (UCST) phase diagrams. - - ~  ln(1 - ~ 2 )  -[- 2.~ q)2i In 
Other types of phase diagrams, such as lower critical R T N 1 i= 1 

~02i 

solution temperature (LCST), combined LCST and + O( T, ~2)tP2( 1 - -  q~2) (2) 
UCST, closed loop and hour-glass, have been observed 
experimentally for polymer solutions and blends 5'6. The effect of molecular weight on the interaction 
Recently, a modelling method has been described 7's that parameter is typically small 3 and is, therefore, neglected 
is capable of calculating all these types of phase diagrams in equation (2). The relative molar volume of component 
for binary polymer solutions and blends. This method is 1 is N1; Nzi  and ~021 are the relative molar volume and 
based on a temperature- and composition-dependent Z volume fraction of the ith constituent in component 2; 
interaction parameter of the formT'8: and (~2 is the total volume fraction of component 2. The 

interaction parameters 9(T, ¢P2) and z(T, ~02) are related 
Z( T, ¢P2) = (1 + b a ~  2 d- bztp2)(do + dx/T + d 2 In T) bya,S: 

(1) 

where the coefficients bi and d~ are adjustable constants, z(T, ~o) d~o = (1 - q~2)g(T, ~02) (3) 
This form of the temperature dependence follows from 2 
the assumption that the change in heat capacity upon FurthermoreS: 
mixing, Acp, is independent of temperature. The 
quadratic composition dependence was chosen because ~( ' (T ,  q)2)  = 2g'(T, q)2)  - -  (1 - ~p2)g"(T, (/02) (4) 
it has been found to be sufficient to describe most of the and 
experimentally determined X parameters for solu- 
tions 9-11. Finally, it is assumed that the temperature i ' (T ,  ~02)= 3g"(T, q~2)- ( 1 -  q~2)g"(T, ~02) (5) 
dependence of Z is uniform for all compositions. 

Here, the prime, double prime and triple prime denote 
* To whom co r r e spondence  should be addressed the first, second and third derivatives of the appropriate 
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interaction parameter with respect to the volume fraction l l n ( 1 - V o O 2 ~ _ ( v o O 2 Z ( T ,  YoO2)_O2Z(T ' (/92) 
of component 2. 6 - N1 \ 1 -- (/92 // 

The chemical potential A/~i of the ith constituent in the The chemical potential A/~i of the ith constituent in the °2v° ) 
solution is defined as: + Z( T, 0) do  = 0 (10) 

t?AG ~ ~2 
= (6) These two equations are essentially equations (8) and (9) 

A[~i ~ T,P,nj of ref. 12. The separation factor a, as well as the statistical 
where ni is the number of moles of the ith constituent, moments v k and /~k (k = -- 1, 0) are defined as4: 

The following expressions for the chemical potentials 
of component 1, A/~ 1, and of the ith constituent of O~i/O~ = exp(aN2~) (11) 
component 2, A/.121 , c an  be derived from equations (2) to (. 
(6): v k = J Nkw(N) exp(aN) dN (12) 

A'Ul I n ( l -  0 2 ) +  0 2 ( 1 - -  N~21n) R T  - + z(T, 02)N102 (7) and 
P 

A't/2i  - In 02 '~ 1 N2i N21 ~k = J N k w ( N )  dN (13) 
R T  - N2 ~ 02 - -  N 1  (1 -- 02) 

where 0~ and O~i are the volume fractions of component 
f f  2 in the incipient and original-solution phases, and w(N) 

-- NEi(P2(1 --  02)Z( T, 02)  + N21 Z( T, 0) do  is the relative molar volume distribution ofcomponent 2. 
2 

(8) 
Shadow curve 

where N2, is the number-average relative molar volume 
The shadow curve describes the total concentration 

of component 2. of component 2 in the incipient phase, 02Vo, isothermally 
phase separated at the cloud point with concentration 

PHASE EQUILIBRIA IN QUASI-BINARY DE. It is obtained from the integrated versions of the 
SYSTEMS cloud-point expressions. 

In binary systems, the binodal represents three different 
coinciding curves: (i) the locus of the cloud points, (ii) Spinodal 
the locus of the incipient phases coexisting with the The spinodal curve defines the boundary between 
principal phase that just became clouded, and (iii) the unstable and metastable mixtures. Thermodynamically, 

it is expressed by the determinant3: locus of the two coexisting macrophases that develop as 
the temperature is moved beyond the cloud point. In t~2AG 
ternary and higher systems, the binodal becomes a Y = = 0 (14) 
hypersurface in multidimensional T-composition hyper- ~02i~02J 
space that fulfils simultaneously all of the above three and the spinodal curve is given explicitly by: 
functions; however, it is not within our capability to 1 
perceive it and make use of it. Typically, phase diagrams 1 [2z(T, 02) + 02;((T, 02)] + - 0 
of quasi-binary systems employing only two coordinates NI(1 - -  0 2 )  02N2w 
represent merely a section of the binodal hypersurface, (15) 
and the various loci mentioned above are projected as 
different curves: (i) cloud-point curve (CPC), (ii) shadow Critical point 
curve and (iii) coexistence curve. The spinodal curve The critical point is the point on the cloud-point curve 
retains the same form and significance for a quasi-binary and spinodal curve where the two phases become 
system as in the true binary case. identical and form one phase. Thermodynamically, it is 

determined by simultaneously solving equation (14) and 
Cloud-point curve (CPC) the following equationa: 

The CPC describes the precipitation temperature, or Y ' =  0 (16) 
the g interaction parameter at this temperature, as a 
function of solute concentration. Using the calculation where Y' is the determinant derived from equation (14) 
method developed by Solc ~2, the CPC for a quasi-binary by replacing the elements of any horizontal line by 
system is obtained by solving the following two 8Y/Oo2t ,  ~ Y / ~ 0 2 2 ,  etc.* Explicitly, equation (16)is  
equations: given by 

l 1 N2z 
1( 1 -1- YO)t7 -[- (f l-1 -- Y_ 1) "+ N~ 1 (Vo -- 1) NI(1 _ 02)2 F [3z ' (T ,  02)  + 02Z"(T,  02)] + 2 ~  = 0 

N2w02 ) t  ,17) 
1 1 1 + v  o In l _ - v o O 2  

+ - -  Here N2w and N2= are the weight-average and z-average 
N1 2 \ 1 - 02 J relative molar volumes of component 2, respectively. 
' (  

+ ~ (Vo -- 1)[z(T, Vo02)(Vo02) + x(r,  02)02] 
* It is worth noting that equations (14) and (16), which are necessary 

f~O)2~dO x conditions for the existence of a critical point, do not constitute a 
- (v o + 1 ) )(T, 0) d o )  = 0 (9) sufficient condition when the cofactors of all the elements in the replaced 

z row are 0. See, for example, refs. 13 15 
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COMPARISON OF PHASE DIAGRAMS OF I I I I I / 
HYPOTHETICAL BINARY AND QUASI-BINARY o / /  t~ 
SYSTEMS .¢ 

Solutions of  polymers with Schulz-Zimm molecular-weight 
distributions o 

To illustrate the versatility of this theoretical approach, ~.~ ,~ 1 s ~ 
and the key differences between phase diagrams of 
quasi-binary and true binary systems, phase diagrams 
have been computed for several hypothetical polymer ~ o 
solutions. Polymer solutions having five different y~ t~ 
interaction parameters have been investigated, and the 
coefficients for the temperature dependence of these ~ 3  
interaction parameters are given in Table I. Note that, o 
for simplicity, Z is assumed to be independent of o 
concentration for all these systems. However, the effect co -/._L.-----'--""~ 
of concentration on the phase diagrams can be easily i ~ i i 
investigated by manipulating the values of the coefficients 

0.0 0.I 0.2 b 1 and b 2. These five interaction parameters were selected 
so as to produce phase diagrams of the five types that 
have been observed experimentally 5'6, i.e. UCST, LCST,  (P2 
combination of the two with the L C S T  lying above the Figure 1 LCST-type phase diagram showing the spinodal (s), binodal 
UCST, closed loop and hour-glass. Four sets of polymer (b) and critical point (A) for the monodisperse polymer in solution, 
solutions were investigated for each of these five Z and the CPCs for the solutions of polymers having Schulz-Zimm 
interaction parameters. All of these solutions comprise a distributions of molecular weight and k = 1, 2 and 3 

single polymeric component and a low-molecular-weight 
solvent (M = 100). Both components are assumed to 
have densities of unity. The polymers in three of the L 
solutions have Schulz-Zimm distributions of molecular 
weight with identical weight-average molecular weights "¢ 
(Mw = 10000), but each with a different value of the 
coupling constant: k = 1 (M, = 5000, M_ = 15 100), 
k = 2 (M n = 6670, M= = 13 350), k = 3 (M, = 7500, 
M. = 12 500). Physically, the value of k reflects different ~ 
types of termination mechanisms 16. The polymeric 
component in the fourth solution is monodisperse 
(M = 10000), and is used for comparison. 

The phase diagrams generated using the five Z 
parameters are shown in Figures 1-5. In each of these 
figures there are up to five curves, or five pairs of curves, 
depending on the type of phase diagram. In each figure 
the innermost curve (labelled 's') is the spinodal for all 
four polymer solutions, the curve labelled 'b' is the 
binodal for the solution of the monodisperse polymer, T 
and the curves labelled 1-3 correspond to CPCs for the 0 .0  0.1 0 .2  
solutions of polymers with Schulz-Zimm distributions of 
molecular weight and k = 1, 2 and 3, respectively. T h e  (1)2 
critical points for the monodisperse polymers in solution 
are marked (&) in Figures I-5. Thus, it is clearly Figure2 UCST-type phase diagram. See caption to Figure I for 

explanation of curves 
illustrated in Figures I -5  that, although the spinodals 
for each of the polymer solutions with the same Mw and 
Z parameter are identical, their CPCs differ substantially. 
Also, the locations of the critical point(s) for each of these 
solutions are different. (See Table 2 for the critical values true binary (monodisperse polymer) system the critical 

points, if any exist, are located at the extrema of the 
of concentration, Z parameter and temperature, corres- spinodals, which coincide with the extrema of the 
ponding to the critical points in Figures I-5.)  For the binodals. For the quasi-binary systems, however, the 

critical points may be seen to be characteristically offset 
Table 1 Coefficients of Z used to generate the phase diagrams shown f r o m  the extrema; the critical concentration moves 
in Figures 1 5 towards a higher concentration of polymer, and the 
Figure and type do dl d2 critical temperature either decreases or increases 

depending upon whether it is located close to a UCST 
1. LCST 0.80 -60.0 0.0 or an LCST,  respectively. Qualitatively, these pheno- 
2. UCST 0.45 60.0 0.0 mena are to be expected. From examination of equations 
3. LCST and UCST -0.628 60.0 0.18 (9)-(17), it can be seen that the spinodal depends on Mw, 
4. Closed loop 1.836 -60 .0  -0 .18 
5. Hour-glass -0.615 60.0 0.18 but that the critical point(s) depend(s) on Mw and M=, 

and that to describe the CPC of a quasi-binary system 
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requires a knowledge of the details of the molecular- the same solvent and a monodisperse sample of the same 
weight distribution, polymer whose molecular weight was equivalent to the 

It has been found previously 17 that a quasi-binary M w of the polydisperse component. In contrast, it can be 
solution containing a polymer with a continuous seen from Figures 1-5 that solutions of a polymer with 
exponential distribution of molecular weight exhibits a a Schulz-Zimm distribution of molecular weight show 
lower compatibility than a binary solution made up of diminished compatibility for volume fractions of 

polymer, ~o 2, lower than the critical volume fraction, crit ~P2 , 
but enhanced compatibility for ~0 2 > ~b~ TM. This effect is 

I I i 
o most pronounced at the lowest concentrations of 
o polymer, and is accentuated as the polymer becomes t~ 

more polydisperse (i.e. the value of k is decreased). 
Indeed, for the polymer solutions corresponding to the 

o phase diagrams in Figures 3 and 5, the most polydisperse 
~.~ ~ _ polymers (lowest k) are completely immiscible with the 

solvent at low polymer concentrations over the entire 
temperature range plotted. Furthermore, the effect 
observed in Figure 3 is so great that, for the solution 

c~ containing the most polydisperse polymer (k = 1), the 
combined UCST/LCST CPCs have now coalesced to 
form an hour-glass-type CPC. This is despite the fact 
that the spinodals remain unchanged in the combined 

O 
o UCST/LCST form. Thus, the termination mechanism of 
c~ a polymerization reaction affects the location of the 

critical points and the shape of the CPCs of solutions of 
the resulting polymer, and consequently influences the 

0 . 0  0.1 0 .2  degree of miscibility in these systems. 

(P2 Solutions of polymers with the same polydispersity index 
Figure 3 Combined LCST- and UCST-type phase diagram. See As  a further example of the effect of polydispersity on 
caption to Fioure 1 for explanation of curves CPCs, three polymer solutions are considered, each 

comprising a low-molecular-weight solvent (M = 100) 

O 
tD 

uD 

) CO s s 

0 

C,/ 
I I I 

0 . 0  0 . 0 5  0.1 0 . 1 5  0 .0  0.1 0 .2  

% 
(P2 Figure 5 Hour-glass-type phase diagram. See caption to Figure 1 for 

Figure 4 Closed-loop-type phase diagram. See caption to Figure 1 explanation of curves. No critical points exist for these systems in the 
for explanation of curves range plotted 

Table 2 Critical values of the volume fraction of polymer, (p~rit, interaction parameter, Z or", and temperature, T crit 

T crit (K) 

~o~'" ~¢,t Fig. 1 Fig. 2 Fig. 3 Fig. 4 

Monodisperse 0.0910 0.6050 307.7 387.1 253.7 450.0 263.7 429.8 
k = 1 0.1092 0.6070 310.9 382.1 245.3 469.2 276.7 406.5 
k = 2 0.1035 0.6060 309.3 384.5 249.3 459.8 269.8 418.5 
k = 3 0.1006 0.6056 308.7 385.6 251.0 455.9 267.3 423.1 
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and a polydisperse polymer (M, = 10000, D = 2.0). then used to generate the LCST-type phase diagrams 
Although all of the polymer components have identical shown in Figures 6 and 7. 
weight-average molecular weights, Mw, and polydis- In Figures 6 and 7, the innermost curve ('s') is the 
persity indices, D (= Mw/M,), the actual molecular- spinodal for all the systems. Also shown in Figure 6 are 
weight distributions of these components are different, the CPCs of the Flory ('f'), and the mixture of the two 
Specifically, the distributions are Fiery, quasi-log- monodisperse components ('d'), as well as the critical 
normal, and a discrete mixture of two monodisperse points (A, II) for these solutions. The solution containing 
polymers (90% of the number of molecules with a the polymer with the Flory molecular-weight distribution 
molecular weight of M = 3333, and 10% with displays a lower compatibility than that containing the 
M = 20000). The first X parameter from Table 1 was discrete mixture for all volume fractions of polymer 

greater than the critical concentration. This is also true 
at very low concentrations of polymer, and here the 
difference in compatibility is most pronounced. However, 

J ~ ~ for polymer concentrations just less than the critical 
o 

value, although differences are slight, the opposite may 
- be seen to be true. 

In Figure 7, in addition to the spinodal, the CPC for 
the solution containing the polymer with a quasi-log- 

o normal molecular-weight distribution and the critical 
I~ ~ point (+)  for this system are shown. The CPC for this 

d solution is markedly different from any of those shown 
Q) t s in Figure 6. In particular, this CPC exhibits a depression 

E-~ 0 ~ close to the critical point, and a triple point at which 
¢q two incipient phases of different composition are at 

equilibrium with the principal phase. This behaviour has 
been discussed in detail 1a'19 for a UCST phase diagram 

0 'x~. ~ of a solution containing a polymer with a true log-normal o 
¢~ ~ molecular-weight distribution, and has been attributed 

f to the presence of a minute but significant amount of a 
i f ~ i very high-molecular-weight material. Indeed, depressions 

0.0 0.1 0.2 of this type have been observed experimentally 2° in CPCs 
for mixtures of epoxy monomers of the DGEBA type 

q)2 (diglycidyl ether of bisphenol A) with CTBN (carboxyl- 
terminated butadiene-acrylonitrile random copolymer) 

Figure Ii LCST-type phase diagram. The polymers in the two 
solutions have the same weight-average molecular weight and rubbers. 
polydispersity index, but different molecular-weight distributions. These figures illustrate very clearly that polymer 
Shown are the spinodal (s), and the CPCs for the solutions of polymers solutions in which the polymeric components have the 
having discrete (d, c.p. = I )  and Flory (f, c.p. = &) distributions of s a m e  values of Mw and D m a y  still exhibit significantly 
molecular weight different CPCs. An LCST-type phase diagram was 

selected to illustrate this point; however, the effects 
described occur regardless of the type of phase diagram. 

t ~ ~ ~ Thus, in order to compare quantitatively CPCs of 
o different quasi-binary polymer systems, a knowledge of 

the details of the molecular-weight distributions of the 
polymeric components is required. 

O 
,~ COMPARISON WITH EXPERIMENTAL DATA 

Few experimental data are available in the literature of 
s ~9 CPCs for quasi-binary polymer solutions or blends for 

~ which the details of the molecular-weight distributions 
c~ of the polymeric components have been carefully 

characterized. However, Tong et al. 2x performed 
measurements on three model polymer mixtures that 

o were prepared by mixing four narrow molecular-weight 
o distribution polystyrene fractions in different ratios. The cq 

weight-average molecular weight and polydispersity 
index of these four fractions (F1, F2, F3, F4) are listed 

0.0 0.1 0.2 in Table 3, and the composition by weight of the three 
mixtures (M1, M2, M3) of these fractions is given in 
Table 4. The experimental CPCs of the three mixtures 

(1)2 in cyclohexane are replotted as the symbols in Figure 8. 
Figure 7 The LCST phase diagram shown here is also for a solution Using the distributions of molecular weight given in Table 
of a polymer with the same weight-average molecular weight and 
polydispersity index as for those corresponding to the phase diagram 4, theoretical CPCs were fitted to the experimental data, 
in Figure 6, but with a quasi-log-normal distribution of molecular and the results are shown as curves in the same figure. 
weight. The critical point (+), spinodal (s) and the CPC are shown The fitting was performed to all three experimental CPCs 
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Table 3 Weight-average molecular weight and polydispersity of the data. Fortunately, for most polymer solutions and blends 
polystyrene fractions 21 Z is not strongly dependent upon molecular weight 8, and 

the theory presented here gives a good description of the 
Fraction Mw Mw/M, liquid-liquid phase behaviour. For the polystyrene/ 
F1 11000 1 .02  cyclohexane system, good fits could be readily achieved 
F2 44 500 1.01 tO each of the CPCs individually. However, this would, 
F3 195000 1.07 of course, result in several Z parameters. 
F4 807 000 1.01 

CONCLUSION 

A temperature- and concentration-dependent interaction 
Table 4 Composition by weight of the polystyrene mixtures 21 parameter has been used to study liquid-liquid phase 

Mixture M1 M2 M3 diagrams of quasi-binary polymer solutions and blends 
in which one component may have a molecular weight 

Vl 0.4 0.25 0.1 distribution. This approach can be used to generate the 
F2 0.3 O.25 O.2 five most generally observed types of phase diagrams. 
F3 0.2 0.25 0.3 
F4 0.1 0.25 0.4 Polymer solutions in which the polymeric component 

has the same weight-average molecular weight, and even 
Mw 137 500 264400 391 300 
mw/m, 6.08 7.92 6.11 the same polydispersity index, may have markedly 

different cloud-point curves. Thus, in order to compare 
quantitatively the cloud-point curves for different 
polymer samples in a quasi-binary system, it is necessary 
to know the exact molecular-weight distribution of the 

300 polymer. The interaction parameter of a polymer solution 
~ M3 "--~'x~,xx" ~ [2 M 2 or a blend is obtained when a best fit between the 

= , ~ " ~ " ~  & • M, theoreticallYobtained, and experimentally determined values is 
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